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INTENSIFICATION OF CONVECTIVE HEAT EXCHANGE

IN CHANNELS WITH A POROUS HIGH-THERMAL-CONDUCTIVITY
FILLER, HEAT EXCHANGE WITH LOCAL THERMAL
EQUILIBRIUM INSIDE THE PERMEABLE MATRIX

V. A. Maiorov, V. M, Polyaev, UDC 536.24:532,685
L. L. Vasil'ev, and A. I. Kiselev

Results are presented from analytical and experimental studies of intensification
of convective heat exchange in a channel with a porous high-thermal-conductivity
filler in the case of moderate external heating.

The placement, in a channel, of a porous, high-heat—-conducting material which is strongly
bound to the channel walls causes a qualitative change in the mechanism and an intensifica-
tion of heat transfer; heat is transferred from the channel walls by conduction through the
framework inside the permeable matrix and is thence diffused in the flow as a result of in~
trapore heat exchange. The obvious physical concept behind this method was the reason that
the development of a technology for making porous metals was accompanied by the proposal
[1-5] of a large number of designs of various heat exchangers in which either the channels
or the intertube space is filled with a permeable metal. Later the phenomenon of a substan-
tial intensification of heat exchange was confirmed experimentally [6-8]. In particular, as
a result of cooling provided by pumping water through a porous base, reliable operation of
a laser reflector was realized at a thermal load qw = 8107 W/m® in [8]. Theoretical study
of the process was held up for a long time by the absence of necessary information on the
properties of permeable matrices. Recently, as data on the structural, hydraulic [9], heat~
exchange [10], and heat conduction [11] characteristics of different porous metals has been
accumulated and generalized, there has been a rapid increase in the number of publicatiomns
with analytical results [12-19]. However, not all of these works are of a qualitative,
formulative nature and do not offer an exhaustive evaluation of the effect of different pa-
rameters on intensification of heat exchange in the process in question.

Formulation of the Problem, A channel of constant cross section (Fig. 1l.1) of width
or diameter § is filled with a porous high-thermal-conductivity material beginning with the
section z = 0. A single-phase heat carrier flows through the channel. The section z = 0
coincides with the beginning of the external heating of the walls, which is the same on both
sides of the channel. The permeable matrix has perfect thermal and mechanical contact with
the walls, is isotropic, and has a thermal conductivity A which is the same in all direc-
tions. The thermal conductivity of the heat carrier A, is small compared to ) (which is de~
termined by the very essence of the method) and its thermophysical properties are constant.
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Fig. T.l. Physical model
of the process.

Thus, the mass rate remains constant across the channel G = const. The rate hy of volumetric
intrapore heat exchange is great but nonetheless finite [10]. Consequently, beginning with
a certain level of the external heat flow introduced into the channel wall, the temperature
difference T — t between the porous material and the heat carrier becomes appreciable and in-

creases constantly.

Given these assumptions, the temperature field of the permeable matrix T and the heat
carrier t in the plane channel is described by the system of equations

a>T *T
A = h, (T —1);
( e LI

(I.1)

o2
e L — (T —1). (1.2)
0z
The value of hy remains constant with a constant mass rate G [10].

Five boundary conditions must be prescribed for system (I.1)~(I.2). Three of them are
independent of the character of the external heating and reflect the following features of
the process. There is no heat transfer from the porous material counter to the incoming

oT
flow because the thermal conductivity of the latter is negligibly small:x5;h=o= 0. The

temperature of the heat carrier at the inlet to the permeable matrix remains constant t|z=o

to. The symmetry condition 5;‘w=f=0 is satisfied on the channel axis, The remaining two

boundary conditions are determined by the external heating.

1f the channel walls are washed by an external flow with a constant temperature te and
if the rate of comvective heat exchange ow on both sides is constant (boundary conditions of
the third kind), then as the heat carrier moves through the porous material its temperature
approaches te. Using the dimensionless quantities:

t—t, T—t (1.3)
ot 0= P » E=12/8; T=y/§,

,0:

o«

we can write the boundary conditions for this case as follows:

g=0, 2 (.4
y ag H
E=0,9=1 (1.5)
i)
6=0 =0 (1.6)
1=1/2, 0= —— 9. (1.7)
Bi a¢ '
§— o0, §->0. (1.8)

The heat-~transfer coeff1c1ent.1nthe criterion Bi =k _ 8/1 includes the heat-transfer resistance
Sw/Aw of the wall: = (L/owo + Sw/Aw) "t

With a high rate of external heating (Bi » =), Eq. (I.7) changes into the condltlon of
constancy of the temperature of the channel wall Ty = Te:

g=1/2, ® =0. (I.9)
Equations (I.4)-(I.6), (1.8), and (I.9) represent boundary conditions of the first kind.
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When the channel walls are acted upon by a constant external heat flow qy, the mean tem-
perature of the heat carrier t at the outlet of the permeable matrix is proportional to its
length., If we express the dimensionless temperatures as follows for this variant

t—1 o) T—t, (1.10)

Gud/A qudih
then boundary conditions (I.4), (I.6) remain the same but (I.5), (I.7), and (I.8) are re-
placed by

r=12, 98 _ (1.11)
ag
E=0,94=0E>o00 5—————7—1" =——2—E (1.12)
=0 0= » O T P ¢ .
With allowance for (I.3) or (I.10), Eqs. (I.1) and (I.2) take the form
*0 020 ©(I.13)
. = y2(0 — §); .
= T o =y (0—49)
P2 20—, (L.14)
0}

It should be emphasized that only the thermal conductivity of the porous material A and
not that of the heat carrier )¢ is used in the mathematical formulation of the problem (I.1)-
(I.14). Thus, the thermal conduct1v1ty of the permeable filler also goes into the determin-
ing parameters Be, Pe, and y® (and, as will be shown below, in the criterion Nu). The param=
eter Pe = GSc/)A is the analog of the Peclet flow criterion and represents the ratio of the:
quantities of heat transferred along the channel by the heat carrier -and, through conduction,
by the porous material. The dimensionless parameter y° = hy8°/) characterizes the rate of
volumetric intrapore heat transfer. Both of the parameters Pe and y* are constant with a
constant mass rate G across the channel.

For a circular channel of diameter 6, all of the equations (I1.3)-(I.14) remain the same
except for the replacement of (I1.13) by

30 + 320 +_l_ a0 — (0 —9). (1.15)

O og? £ a

System (I.13)-(I.14), with the stated boundary conditions, can be solved in analytical
form by the method of separation of variables. For example, with boundary conditions (I.4)-
(I.8), having expressed ¢ in the form of the product #(§, {)=¢(t)P(E), we can use (I.13)-(I.14)
to obtain the following system of ordinary differential equations

9" +4pfp = 0; | (1.16)
Pe rrr ” 4p? ’
—— Y+ _pe(1+___i’l:___)¢___4uz¢=0_ | (1.17)

It should be emphasized that the form of the last equation of (I.17) does not depend on the
channel geometry. The solution of the problem is then written as follows:

(@ B = 2An(pn (2a0)(exp (e1n8) + Cin eXP (Eank) + Con xXP (e3:8)],

where €,n, €2ns £an are the roots of a third-order characteristic equation

Pe '
— 63+ ¢2— Pe (1 + 4pa/y2) e — du; =0,

in which up are characteristic values of the problem.

It is hard in the general case to evaluate the effect of the parameters Pe and v? on the
roots of this equation and the solution of the problem as a whole with variable values of up,
dependent on the boundary conditions and channel geometry. Thus, let us concern ourselves
primarily with several special cases of the process in question, when the roots of the last
equation can be expressed in simple form. All of these special cases permit simplification
of Eq. (I.17).
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Fig., I.2, Effect of the param—
eter Pe on the change in local
(1-4) and mean (1'=4') heat-
transfer criteria in the inlet
section of a permeable matrix
in a plane channel with a con-
stant wall temperature (Ty =
tw, Bi > ®): 1, 1') Pe » =3
2, 2') Pe = 100; 3, 3') 10; 4,
4') 1; 5) local Nu for a flow
with a parabolic velocity pro-
file in a channel without a
filler and without allowance
for the effect of axial heat
conduction,

Heat Exchange with Local Thermal Equilibrium Inside the Porous Material, With a moder-
ate external heat flow, the temperatures of the permeable matrix and the heat carrier do not
differ appreciably due to the high rate of intrapore heat transfer, Thus, we have local
thermal equilibrium inside the porous structure: T = t, We will henceforth exactly deter-
mine the conditions under which this assumption is valid.

Assuming that 9=90 (or that v? + «), system (I.13)=(I.14) can be written as a single
equation

agz agz ag = 09 (1018)

Eq. (I.16), for determining the function ¢({) remains the same, while Eq. (I.17) is simpli~-
fied:

P — Pe ' — 4p2p = 0.

The number of boundary conditions is reduced to four — condition (I.4) is eliminated.

Boundary Conditions of the First and Third Kinds. With boundary conditions (I.5)-(I.8),
the solution of Eq, (I.18) has the form

N Antin , 1.19
8=0=2%— "™ cos (2a0) exp (—B.B). (112
= sinpg,

Here, we used the notation

An::—l—( ?nzpn ); (1.20)
Mo \ Hp - SillQ, COS Uy
By, = [(Pe/2) + 4usl'/* — P2, (1.21)
where up are characteristic values satisfying the familiar characteristic equation
ptgp = Bi/2. (1.22)

With a constant channel-wall temperature Ty = to(Bi -+ «), we have upn = (2n — 1)7/2, n = 1,
2, 35 evas An = 1/1-11210

The complete local criterion Nuk, determining the heat-transfer rate k = ((1/a + 1)ko)™*
between the heat carrier inside the porous material filling the channel and the external
flow, is calculated from the equation
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This criterion also includes the thermal conductivity A of the permeable filler.

The mean temperature 9 of the heat carrier over the cross section
’ _ 12 o
8=2|0dl=2 ZA,,exp (—BRE)- (I.24)
0 1
The local criterion Nﬁ, determining the heat-transfer rate a between the flow in the
channel and the channel wall, is determined by the following relation after Nuk is calculated

Nu == ad/h = Bi Nu,/(Bi — Nu). (1.25)
With a constant wall temperature (Bi - «), we have Nug -+ Nu.

It follows from the above results (I1.19) that the change in the temperatures of the
porous material and the heat carrier along the channel depend separately on the coordinate
¢ and the parameter Pe, With an increase in Pe, the following asymptote is realized

BoBlpens —> 417E/ Pe, (1.26)

eliminating the effect of axial heat conduction. This is equivalent to dropping the first
term in the left side of Eq. (I.1): A3%T/82z% = 0. 1In this case, the change in the tempera-
ture of the heat carrier along channels of any form depends only on one parameter £/Pe.

Figure 1.2 shows the effect of the parameter Pe on the rate of local heat transfer with
a constant wall temperature (Bi - =), Certain features should be pointed out. For cases in
which no allowance is made for axial heat conduction (Pe = <, curves 1 and 5), in the transi-~
tion to the "fuller" uniform velocity profile the heat-transfer rate increases both on the
initial section and in the region of stabilized heat transfer. Dependence 2 for Pe = 100
nearly coincides with the first dependence, i.e., at Pe > 100 the effect of axial heat con-
duction can be ignored. All of the values of Pe with a uniform velocity profile (curves 1-4)
correspond to the same limiting value of Nuwx in the region of stable heat exchange. Length-
wise conductive heat transfer (at Pe < 100) increases both the heat~transfer rate on the in-
let section and the length of this zone.

We must also note the following important property — the heat-transfer rate in a channel
with a porous filler is determined by the value of Pe but does not depend separately on the
Reynolds number Re in the channel, i.e., the flow regime (laminar or turbulent) has no ef-
fect, in contrast to the case in hollow channels.

___ The dashed lines 1'-4' in Fig. I.2 show the change in the mean heat-transfer criterion
Nui for the inlet section of the porous material:
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With sufficiently high values of £ in the region of stable heat exchange, both the local
and the mean heat-transfer criteria Nuy and Nuj acquire identical constant limiting values
Nukwe In this case, we can limit ourselves to the first term of the series in (I.23), from
which it follows that Nuke = 2u2. The characteristic values u, depend only on the parameter
Bi. Thus, for a certain channel geometry, the limiting values Nug. depend only on Bi (Fig.
I.3). With Bi » «, we obtain Nuke =+ Nuw. With Bi -+ 0, the criterion Nuke decreases as well
(Nuke =+ 0), since Nue increases, -

The length £7 of the initial section of thermal stabilization for the local heat-trans-
fer coefficient is usually determined as the distance from the beginning of the external heat-
ing (in the present case, from the inlet to the porous material) over which the condition
Nuk(£7) = 1,01(Nuge) is satisfied. From here, with allowance for Eq. (I.23), it follows
that:

B = ———— In (10003 Ay/u 4y) (1.28)
B,— B,

Boundary Conditions of the Second Kind. The solution of (I.18) with boundary conditions
(1.6), (I1.11)-(I.12) has the form

_g-_2 R SR N e Vi _ (1.29)
9=0=——E+0—— ; " €08 (21,5) €xp (—BE).

Here, Bp is determined from Eq. (I.21), while the characteristic values yp = nr, n =1, 2,
3, ... The temperature of the channel wall is found from (I.29) with z = 1/2:

Tu—l _ 2 ¢

1 z 1 1.30
B+ — Y= e (B (£-30)
1 Mn

0, =¥ 0
v Guwb/A Pe
The local heat-transfer coefficient o for heat transfer from the channel wall to the
flow inside the porous material is referred to the difference between the wall temperature
and the mean temperature of the heat carrier. In this case, it is determined from the ex-
pression
= 1 @ 1 -1
Nu= ab/h = (€, — ) = [_ _,2 — exp (_Bng)] . (1.31)
L 6 1 p'n

The mean heat-transfer coefficient a is calculated from the mean integral temperature differ-
ence

i L fe,—mal I & 1—ep (=B 1
Nt = |— (@w—a)dg] 1L _______} ' (1.32)
[g § [ 6 & zr p2B,

To calculate the length £7 of the initial thermal section, we use Eq. (1.31) to obtain
the expression

1
t=—p—In (600/p3). (1.33)
1

It is interesting to note that we can also obtain an analytical expression to determine the
;ength £7 of the initial section for the mean heat—transfer_coefficient: from (I.32) we find
£1 = 600/Biui. It follows from this that the length ratio £7/&7 is independent of the param-
eter Pe and remains constant £7/£7 = 14.8.

Comparison of the results shown in Figs. I.2 and I.4 illustrates that all of the quali-
tative features of heat transfer in a channel with a porous filler noted earlier for the
process with boundary conditions of the first and third kinds also hold for boundary condi-
tions of the second kind.

It follows from Fig. I.5 that the difference between the results for the cases with and
without allowance for axial heat conduction, which is substantial for small Pe, gradually
disappears as Pe increases and approaches Pe = 100. Meanwhile, the length of the initial
thermal section is greater in the first case due to lengthwise heat transfer along the porous
material. Values of the length £7 for the leftmost (Pe = 0) and rightmost (Pe + «) points
in Fig. I.5 are shown in Table 1.
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Fig. I.4. Effect of the parameter Pe on the change in the
local (1-4) and mean (1'-4') heat-transfer criteria on the
inlet section of a permeable matrix in a plane channel with
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Fig. I.5. Dependence of the length of the initial thermal
section in a channel with a porous filler on the parameter
Pe: 1) plane channel, qy = const; 2) circular channel,

aw = const; 3) plane channel, Ty = const; 4) circular chan-
nel, Ty = const; 1'-4') same, respectively, but without
allowance for axial heat conduction (A3%T/3z% = 0).

Effect of Anisotropy of Thermal Conductivity of the Permeable Matrix. Many metals, such
as those used in the form of netting and fibers, have physical properties with a pronounced
anisotropy. These properties include thermal conductivity. We will study heat exchange in ..
a channel with a porous filler (see Fig. I.l) in which thermal conductivity in the transverse
Ay and longitudinal Az directions is quite different. Meanwhile, Ay > Az. We will compare
this with results for a uniform permeable insert with a thermal conductivity Ay which is the
sare in all directions. Thus, we will evaluate the effect of a decrease in longitudinal ther-
mal conductivity Az when the transverse thermal conductivity Ay is constant.

The temperature field of a heat carrier and a porous anisotropic filler is deseribed by
the following equation when their temperatures are equal T = t

2 2
a2 a2 o, (1.34)
022 oy? 0z

Let us examine as an example a variant with boundary conditions of the third kind., Us=-

ing the quantities
A=y /b, > 15 L=y[8; & =EA = %—A;

t—1t )

& = ————; Pe; = PeA; Pe = Gbc/hy; Bi=k_5/Ay, (1.35)

tO_tw '

we reduce Eq. (I.34) and the boundary conditions to dimensionless form:

29 fih) )
R TR
90, D)=1; ¥ (0, §)=0; _
0% —1 9% (1.37)
—— 5 0; ﬂ|;=1/2 T em—
L |r=o Bi o

In such a form, the problem coincides fully with problem (I1.18), (I.5)~(1.8) on heat
transfer in a channel with a porous isotropic insert with a thermal conductivity X = Ay. The
only difference is that the quantities £ and Pe are replaced here by §; = EA; Pe; = Pel.
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TABLE 1., Main Heat~Transfer Characteristics in
Charmels with Local Thermal Equilibrium between the
Porous Filler and Heat Carrier

Plane channel Circular channel
Ty==const ' Jgy==const Typ==const 5 gyy==const

Nu, 4,43 | 5,0 5,78 § 5.0

&
- 0,058 0,104 0,046 i 0,008

€ iPe-»roo .
Ylpecs 0,733 | 0,655 0,739 , 10,523

!

TABLE 2. <Characteristics of Porous Netted Metallic Inserts
in an Annular Channel

Speci- . -
;e Porosity | Metal &mm | Lmm | Zinte extr thr> 8
n
o mi mm Em
1 0,37 |1Kh18N3T| 15 42 45 60 150 2,8
2 0,49 1Kh18NST 15 42 45 60 200 2,8
3 0,55 [1Kh18N9T] 15 42 45 60 220 2,8
4 0,65 '1Kh18N9T 15 42 45 60 250 2,8
5 0,50 Brass 15 42 45 60 — 2,8
L-80
6 0,55 |1Kh18N9T 15 102 45 60 220 6.8

Thus, with allowance for these changes, it is possible to use all of the results (1.19)-(I.25)
to also solv~ the problem with an anisotropic permeable matrix., The effect of reducing Xz
with a constant Ay is to reduce the effect of axial heat transfer by conduction (to increase
Pe). This, as was shown for a channel with a uniform insert, leads to a decrease in heat-
transfer rate on the initial thermal section.

Of thermal interest is the value of the ratio azp/o, characterizing the change in the
heat-transfer rate with the replacement of a uniform porous insert with a thermal conductivity
Ay by an anisotropic insert with a thermal conductivity Ay and Az, other conditions being
equal:

a, - Nu(EA, PeA, Bi) _ Nu(&/Pe, Pe A, Bi)

Aan

a Nu (g, Pe, Bi) Nu'(g/Pe, Pe, Bi) (1.38)
This expression is easily analyzed quantitatively by means of the data shown in Fig. I.2.
Considering that in the present case £,/Pe; = £/Pe, we can see from (I.38) that aazn/c is
nothing more than the ratio of the values of Nu for the same abscissa {/Pe with two dependen-
ces: PeA and Pe., Since A > 1, it follows that agn/a is always less than unity and ap-
proaches unity when £>=% or when Pe is large (Pe - 100). Thus, even a very substantial de-
crease in longitudinal thermal conductivity Az does not in the case of a constant transverse
thermal conductivity Ay reduce the heat—transfer rate if the length of the porous insert 1/
is greater than £7 or if Pe is quite large (Pe - 100).

Similar results are obtained with a constant external heat flow.

Comparison with Experimental Data. Figure I.6 compares experimental data and values
calculated with Eq. (I.32) for the mean heat-transfer criterion Nu for a plane channel with
a porous filler in the case of a constant external heat flow.

The experimental unit and method of measurement were described in [7]. An annular
channel was filled with a porous netted metal, the plane of the net having been normal to
the long axis of the channel. Water and gaseous nitrogen were used as the coolant. The
characteristics of the porous inserts are shown in Table 2. The mass rates of the coolant
corresponded to the following ranges of Reynolds numbers calculated for a channel without a
filler Re = G6/u: Re = 25-340, 1050-8600 for water; Re = 930-9100 for nitrogen. The ex-
perimental parameters pertain to the range in which the anisotropy of the thermal conductiv-
ity of the permeable matrix does not affect heat-transfer rate: the length of the porous
insert was close to the length of the initial section either in the case of substantial val-
ues of the number Pe (Pe = 100 or more) or at Pe < 10.
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Fig. I.6. Comparison of calculated
and experimental data on heat trans-
fer in a channel with a porous filler.
Characteristics of the specimens are
shown in Table 2. The coolants were
water (a) and gaseous nitrogen (b).

L1

Comparison of the analytical and experimental results shows that they agree satisfactor-

ily for different specimens and coolants., It should be noted that the empirically established
increase in heat-transfer rate in channels with a filler compared to hollow channels reached
a factor of 25-40 for water and 200-400 for nitrogen under the conditions investigated.

10.

11.

12.
13.

14.

15.
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HEAT TRANSFER AND CRITICAL HEAT FLUXES IN THE BOILING
OF AQUEOUS SOLUTIONS OF POLYETHYLENE OXIDE AT REDUCED
PRESSURES UNDER NATURAL-CONVECTION CONDITIONS

B. P. Avksentyuk and Z. S. Mesarkishvili UDpC 536.248.2,001,5

Experimental data are presented on heat transfer and critical heat fluxes in the
boiling of aqueous solutions of polyethylene oxide of different concentrations
under conditions of natural convection at atmospheric and reduced temperatures.

Study of the effect of polymeric additives on the heat-transfer rate during boiling is
of both scientific and practical interest. Thus, it was shown in [1, 2] that the addition
of a small quantity of a polymer to a heat carrier may lead to an increase in the heat-trans-
fer coefficient during boiling. However, there has as yet been relatively little research
in this area [1-6]. The investigation [3] studied the separation diameters and frequency
of separation of bubbles at a single artificial vaporation center under conditions of natural
convection and in a flow. Experiments were conducted in [4] on the boiling of aqueous solu-
tions of polymers with forced flow. The experimental data reported in [1-4] on the boiling
of polvmer solutions was obtained only at atmospheric pressure and in a narrow range of
heat fluxes. The exception is the work [6], which studied the effect of surfactants on heat
transfer during the boiling of water at atmospheric and increased pressures in the region of
subcritical heat fluxes. There is no data on critical heat fluxes in polymer solutions, and
no study has been made of boiling in the region of reduced pressures and the effect of sub-
heating of the liquid mass to the saturation temperature.

This article presents results of a complex of studies on heat exchange in aqueous solu~
tions of polyethylene oxide (PE0O) (molecular weight (3-5)+10°), including experiments on
heat transfer during saturated nucleate boiling and heat-transfer crises in saturated and
subheated liquid under conditions of natural convection at atmospheric and reduced pressures.
The study was performed with solutions with the following mass concentrations at 20°C:
0.002; 0.005; 0,01; 0.02; 0.04; 0,08; 0.16; 0.32; 0.64; 1,287, The working section was a
2 ,5-mm~diameter stainless steel tube with a surface corresponding to a class six finish.
The section was placed horizontally in the working volume and heated directly by an alternat-
ing current. A Chromel—Alumel thermocouple was placed inside the tube. In determining the
temperature of the heating surface, we introduced a correction for the temperature drop in
the wall. Before measurements were made, the heat-liberating surface of the section was used
for 2-3 h at near-critical heat fluxes. Polyethylene oxide belongs to a class of polymers
having the property of reverse solubility, which amounts to a deterioration in solubility
with an increase in temperature. The heating of solutions with a concentration above 0.01%
to 90~100°C was accompanied by turbidity and the precipitation of fine flocs.
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