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INTENSIFICATION OF CONVECTIVE HEAT EXCHANGE 

IN CHANNELS WITH A POROUS HIGH-THERMAL-CONDUCTIVITY 

FILLER. HEAT EXCHANGE WITH LOCAL THERMAL 

EQUILIBRIUM INSIDE THE PEP~IEABLE }~%TRIX 

V. A. Maiorov, V. M. Polyaev, 
L. L. Vasil'ev, and A. I. Kiselev 

UDC 536.24:532.685 

Results are presented from analytical and experimental studies of intensification 
of convective heat exchange in a channel with a porous high-thermal-conductivity 
filler in the case of moderate external heating. 

The placement, in a channel, of a porous, high-heat-conducting material which is strongly 
bound to the channel walls causes a qualitative change in the mechanism and an intensifica- 
tion of heat transfer; heat is transferred from the channel walls by conduction through the 
framework inside the permeable matrix and is thence diffused in the flow as a result of in- 
trapore heat exchange. The obvious physical concept behind this method was the reason that 
the development of a technology for making porous metals was accompanied by the proposal 
[1-5] of a large number of designs of various heat exchangers in which either the channels 
or the intertube space is filled with a permeable metal. Later the phenomenon of a substan- 
tial intensification of heat exchange was confirmed experimentally [6-8]. In particular, as 
a result of cooling provided by pumping water through a porous base, reliable operation of 
a laser reflector was realized at a thermal load qw = 8"107 W/m 2 in [8]. Theoretical study 
of the process was held up for a long time by the absence of necessary information on the 
properties of permeable matrices. Recently, as data on the structural, hydraulic [9], heat- 
exchange [i0], and heat conduction [ii] characteristics of different porous metals has been 
accumulated and generalized, there has been a rapid increase in the number of publications 
with analytical results [12-19]. However, not all of these works are of a qualitative, 
formulative nature and do not offer an exhaustive evaluation of the effect of different pa- 
rameters on intensification of heat exchange in the process in question. 

Formulation of the Problem. A channel of constant cross section (Fig. I.i) of width 
or diameter ~ is filled with a porous high-thermal-conductivity material beginning with the 
section z = 0. A single-phase heat carrier flows through the channel. The section z = 0 
coincides with the beginning of the external heating of the walls, which is the same on both 
sides of the channel. The permeable matrix has perfect thermal and mechanical contact with 
the walls, is isotropic, and has a thermal conductivity A which is the same in all direc- 
tions. The thermal conductivity of the heat carrier %o is small compared to % (which is de- 
termined by the very essence of the method) and its thermophysical properties are constant. 
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Fig. I. Io Physical model 
of the process. 

Thus, the mass rate remains constant across the channel G = const. The rate hv of volumetrlc 
intrapore heat exchange is great but nonetheless finite [i0]. Consequently, beginning with 
a certain level of the external heat flow introduced into the channel wall, the temperature 
difference T -- t between the porous material and the heat carrier becomes appreciable and in- 
creases constantly. 

Given these assumptions, the temperature field of the permeable matrix T and the heat 
carrier t in the plane channel is described by the system of equations 

( O2T 02T ~ (I.i) 

Oc at = h . ( T - - t ) .  (1.2) 
Oz 

The value of h v remains constant with a constant mass rate G [I0]. 

Five boundary conditions must be prescribed for system (1.1)-(1.2). Three of them are 
independent of the character of the external heating and reflect the following features of 
the process. There is no heat transfer from the porous material counter to the incoming 

aT 
flow because the thermal conductivity of the latter is negligibly small: %~z[z=0= 0. The 

temperature of the heat carrier at the inlet to the permeable matrix remains constant tlz=o = 
aT 

to. The symmetry condition ~lu=0 =0 is satisfied on the channel axis. The remaining two 

boundary conditions are determined by the external heating. 

If the channel walls are washed by an external flow with a constant temperature t~ and 
if the rate of convective heat exchange 0~ on both sides is constant (boundary conditions of 
the third kind), then as the heat carrier moves through the porous material its temperature 
approaches t~. Using the dimensionless quantities: 

t - - t  T - - t  
= to--t~ ; O= to--t~ ; ~=z/6; ~=y/6,  ( 1 . 3 )  

we can write the boundary conditions for this case as follows: 

O0 (1.4) 
~ = 0 ,  =0; 

O~ 
= o ,  ~ = 1; ( 1 . 5 )  

0o 
~ = 0 ,  0---~-- = O; (1.6) 

1 O0 (1.7)  = 1/2, O = - - ~  ; 
Bi O~ 

~ o o ,  ~ 0 .  

The heat-transfer coefficient in the criterion Bi = k~6/~ 
~w/Xw of the wall: k~ = (i/~ + 6w/~w) -~ 

With a high rate of external heating (Bi + ~), Eq. (I.7) changes into the condition of 
constancy of the temperature of the channel wall Tw = T=: 

= I/2,  O = O. (1.9) 

Equations (1.4)-(1.6), (1.8), and (1o9) represent boundary conditions of the first kind. 

(1.8) 
includes the heat-transfer resistance 
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When the channel walls are acted upon by a constant external heat flow qw, the mean tem- 
perature of the heat carrier t at the outlet of the permeable matrix is proportional to its 
length. If we express the dimensionless temperatures as follows for this variant 

t--to T--to (I.i0) 
q~6/L ' q~/L 

(I.6) remain the same but (I.5), (I.7), and (1.8) are re- then boundary conditions (1.4), 
placed by 

0(3 
= I / 2 ,  = I ;  ( I . I i )  

as 

r  ~)=o  ~ -+~ ,  ~ =  7--to 2 q,~81~ = --FU ~ (1.12) 

With allowance for (1.3) or (I.I0), Eqs. (I.i) and (1,2) take the form 

O~@ ~8 (1.13) 
4 = ?~ (o - -  ~); 

Pe O___~ = %,z (@ _ ~). (1.14) 

It should be emphasized that only the thermal conductivity of the porous material X and 
not that of the heat carrier lo is used in the mathematical formulation of the problem (I.i)- 
(1.14). Thus, the thermal conductivity of the permeable filler also goes into the determin- 
ing parameters Be, Pc, and yz (and, as will be shown below, in the criterion Nu). The param- 
eter Pe = G~c/X is the analog of the Peclet flow criterion and represents the ratio of the 
quantities of heat transferred along the channel by the heat carrier and, through conduction, 
by the porous material. The dimensionless parameter y2 = hv~/X characterizes the rate of 
volumetric intrapore heat transfer. Both of the parameters Pe and y~ are constant with a 
constant mass rate G across the channel. 

For a circular channel of diameter ~, all of the equations (1.3)-(1.14) remain the same 
except for the replacement of (1.13) by 

a~o a-~e + I dO =?z(O--e) ( I .15) 
T + <, Y 

System (1.13)-(1.14), with the stated boundary conditions, can be solved in analytical 
form by the method of separation of variables. For example, with boundary conditions (1.4)- 
(1.8), having expressed ~ in the form of the product @(~, ~)=~(~)~(~), we can use (1.13)-(1.14) 
to obtain the following system of ordinary differential equations 

m" + 4~ -- 0; (1.16) 

Pet ~ ~. ( + 4~' ~ r (1.1n ?~ -F -- Pe _ I --~--/ -- 41~z~; = O. 

It should be emphasized that the form of the last equation of (I.17) does not depend on the 
channel geometry. The solution of the problem is then written as follows: 

0 (~, ~) = ~ A,,(p,~ (2~n~)[exp (8;t.~) + Ct~ exp (e2n~) + C~n exp (e~,,~)], 
1 

where cxn, can, can are the roots of a third-order characteristic equation 

Pe 
%,z'- es q .  82 __  Pe (1 q- 41~. /y  z) ~ - -  4tt~ = O, 

in which ~n are characteristic values of the problem. 

It is hard in the general case to evaluate the effect of the parameters Pe and y a on the 
roots of this equation and the solution of the problem as a whole with variable values of Bn, 
dependent on the boundary conditions and channel geometry. Thus, let us concern ourselves 
primarily with several special cases of the process in question, when the roots of the last 
equation can be expressed in simple form. All of these special cases permit simplification 
of Eq. (1.17). 
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Fig. 1.2. Effect of the param- 
eter Pe on the change in local 
(1-4) and mean (1'-4') heat- 
transfer criteria in the inlet 
section of a permeable matrix 
in a plane channel with a con- 
stant wall temperature (Tw = 
t=, Bi + ~): I, i') Pe § ~; 
2, 2') Pe = 100; 3, 3') i0; 4, 
4') i; 5) local Nu for a flow 
with a parabolic velocity pro- 
file in a channel without a 
filler and without allowance 
for the effect of axial heat 
conduction. 

Heat Exchange with Local Thermal Equilibrium Inside the Porous Material. With a moder- 
ate external heat flow, the temperatures of the permeable matrix and the heat carrier do not 
differ appreciably due to the high rate of intrapore heat transfer. Thus, we have local 
thermal equilibrium inside the porous structure: T = t. We will henceforth exactly deter- 
mine the conditions under which this assumption is valid. 

Assuming that @=@ (or that y2 § ~), system (1.13)-(1.14) can be written as a single 
equation 

02------~-~ + 02-------~ - -  Pe O@ = O, (1 .18)  

Eq. (1.16), for determining the function ~(~) remains the same, while Eq. (1.17) is simpli- 
fied: 

~ " - - P e ~ ' - - 4 ~  = O. 

.The number of boundary conditions is reduced to four -- condition (1.4) is eliminated. 

Boundary Conditions of the First and Third Kinds. With boundary conditions (1.5)-(1.8), 
the solution of Eq. (1.18) has the form 

A.~.  (I.19) 
= 8 = 2 __ ~ sin ~-------~- cos (2~.$) exp (--B~).  

1 

Here, we used the notation 

A~:= 1 ( sin~,~ ) .  ( I . 2 0 )  
~ ~,, + sin ~ cos ~,~ ' 

B~ = [(Pe/2) 2 + 4~1 '/2 -- Pe/2, (1 .21 )  

where ~n are characteristic values satisfying the familiar characteristic equation 

t~ tg !~---- Bi/2. (1.22) 

With a constant channel-wall temperature Tw = t~(Bi -~ ~), we have ~n = (2n- I)~/2, n = i, 
2, 3 ,  ..., An = x/~. 

The complete local criterion Nuk, determining the heat-transfer rate k = ((I/~ + l)k~)-* 
between the heat carrier inside the porous material filling the channel and the external 
flow, is calculated from the equation 

751 



N Uk,,~ I ~ 

4 

2 -- 

1 [ i[ r i i]  
0,f I tO lOO B[ 

Fig. 1.3. Dependence 
of heat-transfer cri- 
teria Nuk~ and Nu~ for 
the region of stabilized 
heat transfer on the 
rate of external heat 
transfer: i) Nuk~ 
plane channel; 2) Nuk=, 
circular channel; 3) 
Nu~, plane channel; 4) 
Nu=, circular channel. 

1 aOII =____~ 2 , , (I.23) 
Nuh = k6/k = ~ 0~ ~= ,12 A ~  exp t - -B~) .  

This criterion also includes the thermal conductivity I of the permeable filler. 

The mean temperature ~ of the heat carrier over the cross section 

]/2 

= 2 j' ~d~ = 2 ~ A . e x p  (--B.~). (1.24) 
0 1 

The local criterion NU, determining the heat-transfer rate ~ between the flow in the 
channel and the channel wall, is determined by the following relation after Nuk is calculated 

Nu =:~6/~ = BiNukl(Bi--Nuh). (1.25) 

With a constant wall temperature (Bi § ~), we have Nuk § Nu. 

It follows from the above results (1.19) that the change in the-temperatures of the 
porous material and the heat carrier along the channel depend separately on the coordinate 
$ and the parameter Peo With an increase in Pc, the following asymptote is realized 

B , ~ t p e . ~ - + . 4 ~ / P e ,  (i. 26) 

eliminatingthe effect of axial heat conduction. This is equivalent to dropping the first 
term in the left side of Eq. (I.I): l~*T/~z = = 0. In this case, the change in the tempera- 
ture of the heat carrier alongchannels of any form depends only on one parameter ~/Pe. 

Figure 1.2 shows the effect of the parameter Pe on the rate of local heat transfer with 
a constant wall temperature (Bi + =). Certain features should be pointed out. For cases in 
which no allowance is made for axial heat conduction (Pe ~ ~, curves I and 5), in the transi- 
tion to the "fuller" uniform velocity profile the heat-transfer rate increases both on the 
initial section and in the region of stabilized heat transfer. Dependence 2 for Pe = i00 
nearly coincides with the first dependence, i.e., at Pe > I00 the effect of axial heat con- 
duction can be ignored. All of the values of Pe with a uniform velocity profile (curves ]-4) 
correspond to the same limiting value of Nu~ in the region of stable heat exchange. Length- 
wise conductive heat transfer (at Pe < i00) increases both the heat-transfer rate on the in- 
let section and the length of this zone. 

We must also note the following important property --the heat-transfer rate in a channel 
witha porous filler is determined by the value of Pe but does not depend separately on the 
Reynolds number Re in the channel, i.e., the flow regime (laminar or turbulent) has no ef- 
fect, in contrast to the case in hollow channels. 

The dashed lines i'-4' in Fig. 1.2 show the change in the mean heat-transfer criterion 
Nuk for the inlet section of the porous material: 
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__ i ~ ( 1 . 2 7 )  
Nuh = ~ !' Nu~ (~) d~. 

With sufficiently high values of ~ in theregion of stable heat exchange, both the local 
and the mean heat-transfer criteria Nu k and Nu k acquire identical constant limiting values 
Nuk~. In this case, we can limit ourselves to the first term of the series in (1.23), from 
which it follows that Nuk~ = 2~. The characteristic values ~, depend only on the parameter 
Bi. Thus, for a certain channel geometry, the limiting values NUk~ depend only on Bi (Fig. 
1.3). With Bi + =, we obtain Nuk~ § Nu~. With Bi + 0, the criterion Nuk~ decreases as well 
(Nuk= § 0), since Nu~ increases. 

The length iZ of the initial section of thermal stabilization for the local heat-trans- 
fer coefficient is usually determined as the distance from the beginning of the external heat- 
ing (in the present case~ from the inlet to the porous material) over which the condition 
Nuk($Z) = 1.01(Nuk~) is satisfied. From here, with allowance for Eq. (1.23), it follows 

that : 
I 

B , , -  B1 

Boundary Conditions of the Second Kind. 
(I.6), (I.ll)-(I.12) has the form 

2 I 
~=e= ~+~- 

Pe 12 

2 A ~ (I.28) In (100~2 ~/l~i Aa). 

The solution of (1.18) with b o u n d a r y  conditions 

oo (--I) n (I.29) 
2 cos (2~.~) exp (--Bn~). 

l lJ, n 

Here, Bn is determined from Eq. (1.21), while the characteristic values ~n = n~, n = i, 2, 
3, ... The temperature of the channel wall is found from (1.29) witb ~ = 1/21 

o~ T~--~o 2 ~+ i _~ 1 (1.30) 
= -- ~ --T exp (--B,,[). 

q~8i~ Pe 6 1 ~ 

The local heat-transfer coefficient a for heat transfer from the channel wall to the 
flow inside the porous material is referred to the difference between the wall temperature 
and the mean temperature of the heat carrier. In this case, it is determined from the ex- 

pression 

1 Nu = ~6/~ = (@~ __~)-1 = _ - -  ~ exp ( - - B ~ )  �9 

The mean heat-transfer coefficient ~ is calculated from the mean integral temperature differ- 

ence 

Nu = ~ (Ow --  ~) d~ ( I .32)  
~. n 

(1.31) to obtain To calculate the length $l of the initial thermal section, we use Eq. 

the expression 

1 ( i . 3 3 )  
~ = ~ in (6oo/~b. 

It is i~teresting to note that we can also obtain an analytical expression to determine the 
length El of the initial section for the mean heat-transfer coefficient: from (1.32) we find 
El = 600/Bx~. It follows from this that the length ratio ~l/~l is independent of the param- 
eter Pe and remains constant ~I/$l = 14.8. 

Comparison of the results shown in Figs. 1.2 and 1.4 illustrates that all of the quali- 
tative features of heat transfer in a channel with a porous filler noted earlier for the 
process with boundary conditions of the first and third kinds also hold for boundary condi- 

tions of the second kind. 

It follows from Fig. 1.5 that the difference between the results for the cases with and 
without allowance for axial heat conduction, which is substantial for small Pe, gradually 
disappears as Pe increases and approaches Pe = i00. Meanwhile, the length of the initial 
thermal section is greater in the first case due to lengthwise heat transfer along the porous 
material. Values of the length $l for the leftmost (Pc = 0) and rightmost (Pc ~ =) points 
in Fig. 1.5 are shown in Table I. 
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Fig. 1.4. Effect of the parameter Pe on the change in the 
local (1-4) and mean (1'-4') heat-transfer criteria on the 
inlet section of a permeable matrix in a plane channel with 
a constant external heat flow (qw = const): i, I') Pe § ~; 
2, 2') Pe = I00; 3, 3') i0; 4, 4') i; 5) local Nu for a flow 
with a parabolic velocity profile in a channel without a 
filler and without allowance for axial heat conduction. 

Fig. 1.5. Dependence of the length of the initial thermal 
section in a channel with a porous filler on the parameter 
Pc: I) plane channel, qw = const; 2) circular channel, 
qw = const; 3) plane channel, Tw = const; 4) circular chan- 
nel, Tw ffi const; 1'-4') same, respectively, but without 
allowance for axial heat conduction (%~2T/Bz2 = 0). 

Effect of Anisotropy of Thermal Conductivity of the Permeable Matrix. Many metals, such 
as those used in the form of netting and fibers, have physical properties with a pronounced 
anisotropy. These properties include thermal conductivity. We will study heat exchange in : 
a channel with a porous filler (see Fig. I.i) in which thermal conductivity in the transverse 
ly and longitudinal %z directions is quite different. Meanwhile, Ay > %z. We will compare 
this with results for a uniform permeable insert with a thermal conductivity Ay which is the 
same in all directions. Thus, we will evaluate the effect of a decrease in longitudinal ther- 
mal conductivity lz when the transverse thermal conductivity %y is constant. 

The temperature field of a heat carrier and a porous anisotropic filler is described by 
the following equation when their temperatures are equal T = t 

O2l O2t at 
%z az--- q- q- %y - - G o  . . . .  O. ( 1 . 3 4 )  

ay 2 az 

L e t  u s  e x a m i n e  a s  an  e x a m p l e  a v a r i a n t  w i t h  b o u n d a r y  c o n d i t i o n s  o f  t h e  t h i r d  k i n d .  U s -  
i n g  t h e  quantities 

---- -- A; A 2 = ) ~ / ~ z > l ;  ~ y/6; ~ . ~ = ~ A =  z 
6 

t - -  too 
@ = to_t----- ~ , Pe x = PeA;  Pe = O6c/~.u; Bi = k6/~,u ,  ( 1 . 3 5 )  

we r e d u c e  Eq. (1.34) and the boundary conditions to 

a28 as8 
a~2 + a ~ - - T - - P e l ~  

~(0,  ~)= 1; 8(oo, 

a ,  [ = 0; 81~=,/2 = - -  
a~ [==o 

dimensionless form: 

a8 
= O; 

~) = 0; 

--I 0~ 

Bi a~ 

( 1 . 3 6 )  

(1.37) 

In such a form, the problem coincides fully with problem (1.18), 
transfer in a channel with a porous isotropic insert with a thermal conductivity ~ = ly. 
only difference is that the quantities ~ and Pe are replaced here by ~, = ~A; Pe, ffi PeA. 

(1.5.)-(1.8) on heat 
The 
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TABLE I. Main Heat-Tr~nsfer Characteristics in 
Channels with Local %~erma! Equilibrium between the 
Porous Filler snd Heat Carrier 

Plane channel Circular channel 

NLI 

Tm=const qm;=const 

4,93 6,0 

0,0584 0,104 

0,733 0,655 

5,7~ S,O 

0,0466 9,068 

0,739 [0,523 

Speci- 
m eI1 

1 

2 
3 
4 

5 

6 

TABLE 2. 
in an Annular Channel 

Porosity [ Metal 

0,65 1KhlSN9TI 
t 

0,50 [ Brass 
L-80 

0,55 IKhlSN97 

Characteristics of Porous Netted Metallic Inserts 

6, mm 

15 
15 
15 
15 

15 

15 

42 
42 
42 
42 

42 

102 

d �9 intr 

45 
45 
45 
45 

45 

45 

dextr) 
Lmrn 

60 
60 

60 
60 

60 

6O 

dth r , 
Prn 

150 
200 
220 

25O 

220 

l/~ 

2,8 
2,8 
2,8 
2,8 

2,8 

6,8 

Thus, with allowance for these changes, it is possible to use all of the results (1.19)-(1.25) 
to also solv- the problem with an anisotropic permeable matrix. The effect of reducing %z 
with a constant %y is to reduce the effect of axial heat transfer by conduction (to increase 
Pe). This, as was shown for a channel with a uniform insert, leads to a decrease in heat- 
transfer rate on the initial thermal section. 

Of thermal interest is the value of the ratio ~an/U, characterizing the change in the 
heat-transfer rate with the replacement of a uniform porous insert with a thermal conductivity 
%y by an anisotropic insert with a thermal conductivity %y and %z, other conditions being 
equal: 

_aan _ Nu(~A, PeA,  Bi) Nff(~/Pe, PeA,  Bi) 
- Nu(~, Pe, Bi) = NU'(~/Pe, Pc, Bi) ( I . 3 8 )  

This expression is easily analyzed quantitatively by means of the data shown in Fig. 1.2. 
Considering that in the present case ~/Pex = $/Pe, we can see from (I.38) that aan/U is 
nothing more than the ratio of the values of Nu for the same abscissa ~/Pe with two dependen- 
ces: PeA and Pe. Since A > I, it follows that aan/a is always less than unity and ap- 
proaches unity when ~$~ or when Pe is large (Pc + I00). Thus, even a very substantial de- 
crease in longitudinal thermal conductivity %z does not in the case of a constant transverse 
thermal conductivity %y reduce the heat-transfer rate if the length of the porous insert Z/~ 
is greater than ~Z or if Pe is quite large (Pe + i00). 

Similar results are obtained with a constant external heat flow. 

Comparison with Experimental Data. Figure 1.6 compares experimental data and values 
calculated with Eq. (I.32) for the mean heat-transfer criterion Nu for a plane channel with 
a porous filler in the case of a constant external heat flow. 

The experimental unit and method of measurement were described in [7]. An annular 
channel was filled with a porous netted metal, the plane of the net having been normal to 
the long axis of the channel. Water and gaseous nitrogen were used as the coolant. The 
characteristics of the porous inserts are shown in Table 2. The mass rates of the coolant 
corresponded to the following ranges of Reynolds numbers calculated for a channel without a 
filler Re = G6/~: Re = 25-340, 1050-8600 for water; Re = 930-9100 for nitrogen. The ex- 
perimental parameters pertain to the range in which the anisotropy of the thermal conductiv- 
ity of the permeable matrix does not affect heat-transfer rate: the length of the porous 
insert was close to the length of the initial section either in the case of substantial val- 
ues of the number Pe (Pe = i00 or more) or at Pe < I0. 
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Fig. 1.6. Comparison of calculated 
and experimental data on heat trans- 
fer in a channel with a porous filler. 
Characteristics of the specimens are 
shown in Table 2. The coolants were 
water (a) and gaseous nitrogen (b). 

Comparison of the analytical and experimental results shows that they agree satisfactor- 
ily for different specimens and coolants. It should be noted that the empirically established 
increase in heat-transfer rate in channels with a filler compared to hollowchannels reached 
a factor of 25-40 for water and 200-400 for nitrogen under the conditions investigated. 
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HEAT TRANSFER AND CRITICAL HEAT FLUXES IN THE BOILING 

OF AQUEOUS SOLUTIONS OF POLYETHYLENE OXIDE AT REDUCED 

PRESSURES UNDER NATURAL-CONVECTION COI~ITIONS 

B. P. Avksentyuk and Z. S. Mesarkishvili UDC 536.248.2.00105 

Experimental data are presented on heat transfer and critical heat fluxes in the 
boiling of aqueous solutions of polyethylene oxide of different concentrations 
under conditions of natural convection at atmospheric and reduced temperatures. 

Study of the effect of polymeric additives on the heat-transfer rate during boiling is 
of both scientific and practical interest. Thus, it was shown in [I, 2] that the addition 
of a small quantity of a polymer to a heat carrier may lead to an increase in the heat-trans- 
fer coefficient during boiling. However, there has as yet been relatively little research 
in this area [1-6]. The investigation [3] studied the separation diameters and frequency 
of separation of bubbles at a single artificial vaporation center under conditions of natural 
convection and in a flow. Experiments were conducted in [4] on the boiling of aqueous solu- 
tions of polymers with forced flow. ~le experimental data reported in [1-4] on the boiling 
of polymer solutions was obtained only at atmospheric pressure and in a narrow range of 
heat fluxes. The exception is the work [6], which studied the effect of surfactants on heat 
transfer during the boiling of water at atmospheric and increased pressures in the region of 
subcritical heat fluxes. There is no data on critical heat fluxes in polymer solutions, and 
no study has Been made of boiling in the region of reduced pressures and the effect of sub- 
heating of the liquid mass to the saturation temperature. 

This article presents results of a complex of studies on heat exchange in aqueous solu- 
tions of polyethylene oxide (PEO) (molecular weight (3-5).i0~), including experiments on 
heat transfer during saturated nucleate boiling and heat-transfer crises in saturated and 
subheated liquid under conditions of natural convection at atmospheric and reduced pressures. 
The study was performed with solutions with the following mass concentrations at 20~ 
0.002; 0.005; 0.01; 0.02; 0.04; 0.08; 0.16; 0.32; 0.64; 1.28%. The working section was a 
2.5-mm-diameter stainless steel tube with a surface corresponding to a class six finish. 
The section was placed horizontally in the working volume and heated directly By an alternat- 
ing current. A Chromel--Alumel thermocouple was placed inside the tube. In determining the 
temperature of the heating surface, we introduced a correction for the temperature drop in 
the wall. Before measurements were made, the heat-liberating surface of the section was used 
for 2-3 h at near-critical heat fluxes. Polyethylene oxide belongs to a class of polymers 
having the property of reverse solubility, which amounts to a deterioration in solubility 
with an increase in temperature. The heating of solutions with a concentration above 0.012 
to 90-I00~ was accompanied by turbidity and the precipitation of fine flocs. 
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